Một cửa hàng bán một tấm vải trong \(4\) ngày. Ngày thứ nhất bán \(\dfrac{1}{6}\) tấm vải và \(5m;\) ngày thứ hai bán \(20\% \) số vải còn lại và \(10m;\) ngày thứ ba tiếp tục bán \(25\%\) số vải còn lại và \(9m\) ; ngày thứ tư bán \(\dfrac{1}{3}\) số vải còn lại, cuối cùng còn \(13m.\) Tấm vải lúc đầu dài:
Trả lời bởi giáo viên
Số mét vải của ngày thứ tư khi chưa bán là: \(13:\left( {1 - \dfrac{1}{3}} \right) = \dfrac{{39}}{2}\left( m \right)\)
Số mét vải của ngày thứ ba khi chưa bán là: \(\left( {\dfrac{{39}}{2} + 9} \right):\left( {1 - 25\% } \right) = 38\left( m \right)\)
Số mét vải của ngày thứ hai khi chưa bán là: \(\left( {38 + 10} \right):\left( {1 - 20\% } \right) = 60\left( m \right)\)
Số mét vải của ngày đầu tiên khi chưa bán là: \(\left( {60 + 5} \right):\left( {1 - \dfrac{1}{6}} \right) = 78\left( m \right)\)
Vậy lúc đầu tấm vải dài số mét là: \(78m\).
Hướng dẫn giải:
Muốn tìm một số biết \(\dfrac{m}{n}\) của nó bằng \(a\) , ta tính \(a:\dfrac{m}{n}\left( {m,n \in \mathbb{N^*}} \right)\)
Giải bài toán bằng cách suy ngược từ cuối lên :
+ Tìm số mét vải của ngày thứ tư khi chưa bán (hay nói cách khác, là tìm số vải còn lại sau ngày thứ 3)
+ Tiếp theo, tìm số mét vải của ngày thứ ba khi chưa bán (hay số mét vải còn lại sau ngày thứ 2)
+ Rồi tìm số mét vải của ngày thứ nhất khi chưa bán (số mét vải lúc đầu).