Một ca nô chạy xuôi dòng với quãng đường $42{\rm{km}}$, rồi sau đó ngược dòng trở lại $20{\rm{ km}}$ hết tổng cộng $5{\rm{h}}$. Biến vận tốc của dòng nước chảy là $2{\rm{ km/h}}$. Tính vận tốc của ca nô lúc dòng nước yên lặng.
Trả lời bởi giáo viên
Gọi vận tốc của ca nô lúc dòng nước yên lặng là $x{\rm{ }}\left( {{\rm{km/h}}} \right);\left( {x > {\rm{2}}} \right)$
Vì vận tốc nước là $2{\rm{ km/h}}$ nên vận tốc xuôi dòng và ngược dòng lần lượt là $x{\rm{ }} + {\rm{ }}2$ và $x{\rm{ - }}2{\rm{ }}\left( {{\rm{km/h}}} \right)$
Thời gian để ca nô đi hết $42{\rm{ km}}$ xuôi dòng là $\dfrac{{42}}{{x + 2}}{\rm{(h)}}$
Thời gian để ca nô đi hết $20{\rm{ km}}$ ngược dòng là $\dfrac{{20}}{{x - 2}}{\rm{(h)}}$
Tổng thời gian là $5{\rm{h}}$ do đó
$\dfrac{{42}}{{x + 2}} + \dfrac{{20}}{{x - 2}} = 5 \Leftrightarrow \dfrac{{42(x - 2) + 20(x + 2)}}{{(x - 2)(x + 2)}} = 5 \Leftrightarrow \dfrac{{62x - 44}}{{{x^2} - 4}} = 5$
$ \Rightarrow 5{x^2} - 62x + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12{\rm{(TM)}}\\x = 0,4{\rm{(L)}}\end{array} \right.$
Vậy vận tốc của ca nô khi nước yên lặng là $12{\rm{ km/h}}$ .
Câu hỏi khác
Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$ trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :
$R$ |
$d$ |
Vị trí tương đối của đường thẳng và đường tròn |
$5cm$ |
$\,4\,cm$ |
...............$\left( 1 \right)$................... |
$8cm$ |
...$\left( 2 \right)$... |
Tiếp xúc nhau |