Câu hỏi:
2 năm trước

Khi xây nhà, cô Ngọc cần xây một bể đựng nước mưa có thể tích \(V = 6{m^3}\) dạng hình hộp chữ nhật với chiều dài gấp ba lần chiều rộng, đáy và nắp và các mặt xung quanh đều được đổ bê tông cốt thép. Phần nắp bể để hở một khoảng hình vuông có diện tích bằng \(\dfrac{2}{9}\) diện tích nắp bể. Biết rằng chi phí cho \(1{m^2}\) bê tông cốt thép là \(1.000.000d\). Tính chi phí thấp nhất mà cô Ngọc phải trả khi xây bể (làm tròn đến hàng trăm nghìn và các chữ số viết liền)?

Đáp án 

VNĐ

Trả lời bởi giáo viên

Đáp án:

Đáp án 

VNĐ

Bước 1: Gọi \(x\left( m \right),\,\,3x\left( m \right)\) lần lượt là chiều rộng, chiều dài của bể. Tính chiều cao của bể.

Gọi \(x\left( m \right),\,\,3x\left( m \right)\) lần lượt là chiều rộng, chiều dài của bể, \(h\) là chiều cao của bể.

Theo bài ra ta có: \(V = x.3x.h = 6 \Rightarrow h = \dfrac{6}{{3{x^2}}} = \dfrac{2}{{{x^2}}}\,\,\left( m \right)\).

Bước 2: Tính tổng diện tích các mặt làm bê tông.

Khi đó tổng diện tích các mặt bể được làm bê tông là:

\(2x.\dfrac{2}{{{x^2}}} + 2.3x.\dfrac{2}{{{x^2}}} + 2x.3x - x.3x.\dfrac{2}{9} = \dfrac{{16{x^2}}}{3} + \dfrac{{16}}{x}\)

Bước 3: Sử dụng BĐT Cô-si cho 3 số dương để tính số tiền ít nhất cần tìm

Áp dụng BĐT Cô-si ta có:

\(\dfrac{{16{x^2}}}{3} + \dfrac{{16}}{x} = \dfrac{{16{x^2}}}{3} + \dfrac{8}{x} + \dfrac{8}{x} \ge 3\sqrt[3]{{\dfrac{{16{x^2}}}{3}.\dfrac{8}{x}.\dfrac{8}{x}}} = 8\sqrt[3]{{18}}\)

Dấu “=” xảy ra khi \(\dfrac{{16{x^2}}}{3} = \dfrac{8}{x} \Leftrightarrow x = \sqrt[3]{{\dfrac{3}{2}}}\).

Vậy số tiền ít nhất mà cô Ngọc cần bỏ ra là \(8\sqrt [3]{18} {.10^6} \approx 21.000.000d\).

Hướng dẫn giải:

Bước 1: Gọi \(x\left( m \right),\,\,3x\left( m \right)\) lần lượt là chiều rộng, chiều dài của bể. Tính chiều cao của bể.

Bước 2: Tính tổng diện tích các mặt làm bê tông.

Bước 3: Sử dụng BĐT Cô-si: \(a + b + c \ge 3\sqrt[3]{{abc}}\,\,\left( {a,\,\,b,\,\,c > 0} \right)\). Dấu “=” xảy ra khi và chỉ khi \(a = b = c\).

Câu hỏi khác