Hộp sữa ông Thọ có dạng hình trụ (đã bỏ nắp) có chiều cao \(h = 12cm\) và đường kính đáy là \(d= 8\,cm\) . Tính diện tích toàn phần của hộp sữa. Lấy \(\pi \simeq 3,14\)
Trả lời bởi giáo viên
Bán kính đường tròn đáy \(R = \dfrac{8}{2} = 4\,cm\) nên diện tích một đáy ${S_d} = \pi {R^2} = 16\pi \,(c{m^2})$
Ta có diện tích xung quanh của hình trụ ${S_{xq}} = 2\pi Rh = 2\pi .4.12 = 96\pi \,(c{m^2})$
Vì hộp sữa đã mất nắp nên diện tích xung quanh của hộp sữa \({S_{tp}} = 96\pi + 16\pi = 112\pi \,\left( {c{m^2}} \right).\)
Hướng dẫn giải:
Sử dụng công thức tính diện tích xung quanh của hình trụ ${S_{xq}} = 2\pi Rh$ và diện tích một đáy ${S_d} = \pi {R^2}.$
Giải thích thêm:
Một số bạn sẽ tính diện tích toàn phần bằng tổng diện tích xung quanh với diện tích hai đáy nhưng hộp sữa ở đây đã mất nắp nên chỉ còn một đáy. Khi tính ta chỉ cần lấy tổng diện tích xung quanh với diện tích một đáy.
Câu hỏi khác
Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$ trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :
$R$ |
$d$ |
Vị trí tương đối của đường thẳng và đường tròn |
$5cm$ |
$\,4\,cm$ |
...............$\left( 1 \right)$................... |
$8cm$ |
...$\left( 2 \right)$... |
Tiếp xúc nhau |