Hỏi có bao nhiêu giá trị \(m\) nguyên trong đoạn \(\left[ { - 2017;2017} \right]\) để phương trình \(\log mx = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Trả lời bởi giáo viên
ĐK: $x>-1;mx>0$
$\begin{array}{l}\log (m{\rm{x}}) = 2\log (x + 1) \Leftrightarrow m{\rm{x}} = {(x + 1)^2} \Leftrightarrow {x^2} + (2 - m)x + 1 = 0\\\Delta = {m^2} - 4m + 4 - 4 = {m^2} - 4m\end{array}$
Để phương trình đã cho có nghiệm duy nhất thì có 2 TH:
TH1: Phương trình trên có nghiệm duy nhất: ${m^2} = 4m \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = 4\end{array} \right..$
Tuy nhiên giá trị $m = 0$ loại do khi đó nghiệm là $x = -1$.
TH2: Phương trình trên có 2 nghiệm thỏa: ${x_1} \le - 1 < {x_2}$
Nếu có ${x_1} = - 1 \to 1 - (2 - m) + 1 = 0 \to m = 0$, thay lại vô lý
$\begin{array}{l}{x_1} < - 1 < {x_2} \to ({x_1} + 1)({x_2} + 1) < 0 \Leftrightarrow {x_1}{x_2} + {x_1} + {x_2} + 1 < 0\\ \to 1 + m - 2 + 1 < 0 \Leftrightarrow m < 0.\end{array}$
Như vậy sẽ có các giá trị $-2017; - 2016; …… -1$ và $4$.
Có $2018 $ giá trị.
Hướng dẫn giải:
Sử dụng kết quả \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) > 0\\f\left( x \right) = g\left( x \right)\end{array} \right.\)