Trả lời bởi giáo viên
Ta có: $f\left( x \right) = 2\sin 2x - 3$
TXĐ: $D = R.$
$f'\left( x \right) = 4\cos 2x$, $f'\left( x \right) = 0 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x =\dfrac{\pi }{2} + k\pi $ $\Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}$, $k \in Z$
$f''\left( x \right) = - 8\sin 2x$
Ta có: $f''\left( {\dfrac{\pi }{4} + \dfrac{{k\pi }}{2}} \right) = - 8\sin \left( {\dfrac{\pi }{2} + k\pi } \right) $ , $k \in Z$
Khi $k=2n$ thì \(\sin \left( {\dfrac{\pi }{2} + 2n\pi } \right) = \sin \dfrac{\pi }{2} = 1\) nên \(f''\left( {\dfrac{\pi }{4} + \dfrac{{2n\pi }}{2}} \right) = - 8 < 0\)
Khi $k=2n+1$ thì \(\sin \left( {\dfrac{\pi }{2} + \left( {2n + 1} \right)\pi } \right) = \sin \dfrac{{3\pi }}{2} = - 1\) nên \(f''\left( {\dfrac{\pi }{4} + \dfrac{{\left( {2n + 1} \right)\pi }}{2}} \right) = 8 > 0\)
Vậy hàm số đạt cực tiểu tại $x = \dfrac{\pi }{4} + \dfrac{\left( {2k + 1}\right)\pi }{2} $
Hướng dẫn giải:
Quy tắc 2:
- Bước 1: Tìm tập xác định của hàm số.
- Bước 2: Tính $f'\left( x \right)$, giải phương trình $f'\left( x \right) = 0$ và kí hiệu ${x_1},...,{x_n}$ là các nghiệm của nó.
- Bước 3: Tính $f''\left( x \right)$ và $f''\left( {{x_i}} \right)$.
- Bước 4: Dựa và dấu của $f''\left( {{x_i}} \right)$ suy ra điểm cực đại, cực tiểu:
+ Tại các điểm ${x_i}$ mà $f''\left( {{x_i}} \right) > 0$ thì đó là điểm cực tiểu của hàm số.
+ Tại các điểm ${x_i}$ mà $f''\left( {{x_i}} \right) < 0$ thì đó là điểm cực đại của hàm số.