Hai công nhân cùng làm 1 công việc. Công nhân thứ nhất làm được $1,5$ ngày thì công nhân thứ 2 đến làm cùng và sau $5,5$ ngày nữa là xong công việc. Biết rằng người thứ 2 hoàn thành công việc đó một mình nhanh hơn người thứ nhất là $3$ ngày. Hỏi nếu làm một mình thì thời gian làm xong công việc của người thứ nhất và người thứ hai lần lượt là:
Trả lời bởi giáo viên
Gọi thời gian người thứ 1 làm một mình xong công việc là: $x$ (ngày); ($x > 5,5$)
Gọi thời gian người thứ 2 làm một mình xong công việc là: $y$ (ngày); ($y > 5,5$)
1 ngày người thứ nhất làm là \(\dfrac{1}{x}\) công việc.
1 ngày người thứ hai làm là \(\dfrac{1}{y}\) công việc.
Theo bài ra: người thứ nhất làm trong $7$ ngày, người thứ 2 làm trong $5,5$ ngày thì xong công việc nên ta có:
\(\dfrac{7}{x} + \dfrac{{5,5}}{y} = 1\begin{array}{*{20}{c}}{}&{(1)}\end{array}\).
Vì làm một mình người thứ nhất lâu hơn người thứ hai là 3 ngày nên ta có: x – y =3 (2)
Từ (1) và (2) ta có hệ:
$\begin{array}{l}\left\{ \begin{array}{l}\dfrac{7}{x} + \dfrac{{5,5}}{y} = 1\\x - y = 3\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\\dfrac{7}{{y + 3}} + \dfrac{{5,5}}{y} = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\7y + 5,5y + 16,5 = {y^2} + 3y\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\{y^2} - 9,5y - 16,5 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = y + 3\\\left[ \begin{array}{l}y = 11\,\,(tmdk)\\y = - 1,5\,\,(ktmdk)\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 11\\x = 14\end{array} \right.\end{array}$
Vậy người thứ hai làm xong công việc một mình trong $11$ (ngày); người thứ nhất làm xong công việc một mình trong $14$ (ngày).
Hướng dẫn giải:
Các bước giải bài toán bằng cách lập hệ phương trình:
Bước 1: Lập hệ phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải hệ phương trình
Sử dụng các phương pháp thế, cộng đại số, đặt ẩn phụ…
Bước 3: Kết luận