Gọi S là tập các số tự nhiên gồm 9 chữ số được lập từ tập X={6;7;8}, trong đó chữ số 6 xuất hiện 2 lần, chữ số 7 xuất hiện 3 lần, chữ số 8 xuất hiện 4 lần. Chọn ngẫu nhiên một số từ tập S; tính xác suất để số được chọn là số không có chữ số 7 đứng giữa hai chữ số 6.
Trả lời bởi giáo viên
+ Số cách sắp xếp 2 chữ số 6 vào 9 vị trí là C29
+ Số cách sắp xếp 3 chữ số 7 vào 7 vị trí còn lại là C37
+ Số cách sắp xếp 4 chữ số 8 vào 4 vị trí còn lại là C44
Số phần tử của tập S là n(Ω)=C29.C37.C44=1260
Gọi A là biến cố “Số được chọn ra từ tập S là số không có chữ số 7 đứng giữa hai chữ số 6”
TH1: Ta xét 2 chữ số 6 thành 1 cặp, ta sẽ sắp xếp cặp này với các chữ số còn lại
Số cách sắp xếp là C18.C37.C44=280 cách
TH2: Ta xếp chữ số 8 đứng giữa hai chứ số 6.
Cách 1: Có 1 số 8 đứng giữa hai số 6, khi đó có coi 686 là 1 cụm thì có 7 cách sắp xếp cụm này vào số có 9 chữ số, có C36 cách sắp xếp 3 chữ số 8 còn lại và C33 cách sắp xếp 3 chữ số 7.
Vậy có 7.C36.C33=140 số
Cách 2: Có 2 số 8 đứng giữa hai số 6, khi đó có coi 6886 là 1 cụm thì có 6 cách sắp xếp cụm này vào số có 9 chữ số, có C25 cách sắp xếp 3 chữ số 8 còn lại và C33 cách sắp xếp 3 chữ số 7.
Vậy có 6.C25.C33=60 số
Cách 3: Có 3 số 8 đứng giữa hai số 6, khi đó có coi 68886 là 1 cụm thì có 5 cách sắp xếp cụm này vào số có 9 chữ số, có C14 cách sắp xếp 3 chữ số 8 còn lại và C33 cách sắp xếp 3 chữ số 7.
Vậy có 5.C14.C33=20 số
Cách 4: Có 4 số 8 đứng giữa hai số 6, khi đó có coi 688886 là 1 cụm thì có 4 cách sắp xếp cụm này vào số có 9 chữ số, có C33 cách sắp xếp 3 chữ số 7.
Vậy có 4C33=4 số
Vậy biến cố A có 280+140+60+20+4=504 phần tử
Xác suất cần tìm là P(A)=5041260=25
Hướng dẫn giải:
Sử dụng công thức xác suất P(A)=n(A)n(Ω) với n(A) là số phân ftuwr của biến cố A và n(Ω) là số phần tử của không gian mẫu.