Câu hỏi:
2 năm trước

Giả sử rằng \(\int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}}  = m\ln \dfrac{3}{2}\). Tìm giá trị của m.

Trả lời bởi giáo viên

Đáp án đúng: b

Đặt \(\cos x = \tan a \Leftrightarrow  - \sin xdx = \left( {1 + {{\tan }^2}a} \right)da\)

Đổi cận \(\left\{ \begin{array}{l}x = 0 \Leftrightarrow a = \dfrac{\pi }{4}\\x = \dfrac{\pi }{4} \Leftrightarrow a = \arctan \dfrac{{\sqrt 2 }}{2}\end{array} \right.\), khi đó ta có:   \(I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{\tan xdx}}{{1 + {{\cos }^2}x}}}  = \int\limits_{\dfrac{\pi }{4}}^{\arctan \dfrac{{\sqrt 2 }}{2}} {\dfrac{{ - \left( {1 + {{\tan }^2}a} \right)da}}{{\tan a\left( {1 + {{\tan }^2}a} \right)}}}  = \int\limits_{\arctan \dfrac{{\sqrt 2 }}{2}}^{\dfrac{\pi }{4}} {\dfrac{{\cos ada}}{{\sin a}}} \)

Đặt \(u = \sin a \Leftrightarrow du = \cos ada\), đổi cận \(\left\{ \begin{array}{l}a = \dfrac{\pi }{4} \Leftrightarrow u = \dfrac{{\sqrt 2 }}{2}\\a = \arctan \dfrac{{\sqrt 2 }}{2} \Leftrightarrow u = \dfrac{{\sqrt 3 }}{3}\end{array} \right.\) , khi đó ta có:

\(\begin{array}{l}I = \int\limits_{\dfrac{{\sqrt 3 }}{3}}^{\dfrac{{\sqrt 2 }}{2}} {\dfrac{{du}}{u}}  = \left. {\ln u} \right|_{\dfrac{{\sqrt 3 }}{3}}^{\dfrac{{\sqrt 2 }}{2}} = \ln \dfrac{{\sqrt 2 }}{2} - \ln \dfrac{{\sqrt 3 }}{3} = \ln \dfrac{{\sqrt 6 }}{2} = \dfrac{1}{2}\ln {\left( {\dfrac{{\sqrt 6 }}{2}} \right)^2} = \dfrac{1}{2}\ln \dfrac{3}{2}\\ \Rightarrow m = \dfrac{1}{2}\end{array}\)

Hướng dẫn giải:

Đặt \(\cos x = \tan a\)

Câu hỏi khác