Đề thi THPT QG - 2021 - mã 101
Trong không gian \({\rm{Ox}}yz\), cho hai điểm \(A(1;0;0)\)và \(B(4;1;2)\). Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) có phương trình là:
Trả lời bởi giáo viên
Gọi \(\left( P \right)\) là mặt phẳng cần tìm ta có: \(\left( P \right) \bot AB \Rightarrow \overrightarrow {{n_P}} = \overrightarrow {AB} = \left( {3;1;2} \right)\).
\( \Rightarrow \) Phương trình \(\left( P \right):\,\,3\left( {x - 1} \right) + y + 2z = 0\) \( \Leftrightarrow 3x + y + 2z - 3 = 0\).
Hướng dẫn giải:
- Mặt phẳng đi qua \(A\) và vuông góc với \(AB\) có 1 VTPT là \(\overrightarrow n = \overrightarrow {AB} \).
- Phương trình mặt phẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có một VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là:
\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)