Trả lời bởi giáo viên
Ta có ${\left( {c + d} \right)^2} - {\left( {a + b} \right)^2} = \left( {c + d + a + b} \right)\left( {c + d - \left( {a + b} \right)} \right) = \left( {c + d + a + b} \right)\left( {c + d - a - b} \right)$ nên A sai.
${\left( {c - d} \right)^2} - {\left( {a + b} \right)^2} = \left( {c - d + a + b} \right)\left[ {c - d - \left( {a + b} \right)} \right] = \left( {c - d + a + b} \right)\left( {c - d - a - b} \right)$ nên B sai.
${\left( {c - d} \right)^2} - {\left( {a - b} \right)^2} = \left( {c - d + a - b} \right)\left( {c - d - \left( {a - b} \right)} \right) = \left( {c - d + a - b} \right)\left( {c - d - a + b} \right)$ nên D sai.
$\left( {a + b + c - d} \right)\left( {a + b - c + d} \right) = \left[ {\left( {a + b} \right) + \left( {c - d} \right)} \right]\left[ {\left( {a + b} \right) - \left( {c - d} \right)} \right] = {\left( {a + b} \right)^2} - {\left( {c - d} \right)^2}$
Nên C đúng.
Hướng dẫn giải:
Sử dụng công thức hiệu hai bình phương \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\)