Câu hỏi:
1 năm trước
Cho \(\widehat {xOy} = {50^0}\), vẽ cung tròn tâm O bán kính bằng 2cm, cung tròn này cắt Ox, Oy lần lượt ở A và B. Vẽ các cung tròn tâm A và tâm B có bán kính 3cm, chúng cắt nhau tại điểm C nằm trong góc xOy. Tính \(\widehat {xOC}\) .
Trả lời bởi giáo viên
Đáp án đúng: b
Xét hai tam giác OAC và OBC có:
OA = OB (= 2cm)
OC chung
AC = BC (= 3cm)
Nên \(\Delta OAC = \Delta OBC(c.c.c)\)
Do đó \(\widehat {AOC} = \widehat {COB}\) (hai góc tương ứng).
Mà \(\widehat {AOC} + \widehat {COB} = {50^0}\) nên \(\widehat {AOC} = \widehat {COB} = \frac{{{{50}^0}}}{2} = {25^0}\)
Vậy \(\widehat {xOC} = {25^0}\).
Hướng dẫn giải:
Ta chứng minh hai tam giác bằng nhau để suy ra hai góc tương ứng bằng nhau