Trả lời bởi giáo viên
Đáp án đúng: a
Ta có: \(\left( {\sqrt[n]{x}} \right)' = \left( {{x^{\dfrac{1}{n}}}} \right)' = \dfrac{1}{n}{x^{\dfrac{1}{n} - 1}} = \dfrac{1}{n}{x^{\dfrac{{1 - n}}{n}}} = \dfrac{1}{n}{x^{ - \dfrac{{n - 1}}{n}}}\)
Hướng dẫn giải:
Sử dụng điều kiện để đẳng thức \(\sqrt[n]{x} = {x^{\dfrac{1}{n}}}\) xảy ra là \(x > 0\) và công thức tính đạo hàm \(\left( {{x^\alpha }} \right)' = \alpha {x^{\alpha - 1}}\)