Câu hỏi:
2 năm trước

Cho tứ diện \(ABCD\). Gọi \(E\), \(F\) lần lượt là trung điểm của các cạnh \(AC\) và \(BC\). Trên mặt phẳng \(\left( {BCD} \right)\) lấy một điểm \(M\) tùy ý (điểm \(M\) có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp (TH) để thiết diện tạo bởi mặt phẳng \(\left( {MEF} \right)\) với tứ diện \(ABCD\) là một tứ giác.

Trả lời bởi giáo viên

Đáp án đúng: c

Hình ở TH1: Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(CD\) tại \(H\). Thiết diện là tam giác \(EFH\).

Hình ở TH2:

Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(BD\) tại \(I\), cắt \(CD\) tại \(H\).

Trong \(\left( {ACD} \right)\): Kẻ \(HE\) cắt \(AD\) tại \(K\).

Thiết diện là tứ giác \(EFIK\).

Hình ở TH3:

Trong \(\left( {BCD} \right)\): Kẻ \(FM\) cắt \(BD\) tại \(I\), cắt \(CD\) tại \(H\).

Trong \(\left( {ACD} \right)\): Kẻ \(HE\) cắt \(AD\) tại \(K\).

Thiết diện là tứ giác \(EFIK\).

Hướng dẫn giải:

Dựng thiết diện theo từng vị trí của \(M\) trong đề, từ đó kết luận trường hợp nào cho ta thiết diện là một tứ giác.

Câu hỏi khác