Trả lời bởi giáo viên

Đáp án đúng: c

+) Xét tam giác $ABC$ có \(B{C^2} = {5^2} = 25;A{B^2} + A{C^2} = {4^2} + {3^2} = 25; \Rightarrow B{C^2} = A{B^2} + A{C^2}\)

\( \Rightarrow \Delta ABC\) vuông tại A (định lý Pytago đảo)

\( \Rightarrow AB \bot AC\) mà $A \in \left( {C;CA} \right)$ nên $AB$ là tiếp tuyến của $\left( {C;CA} \right)$

Hướng dẫn giải:

Sử dụng  cách chứng minh tiếp tuyến

Để chứng minh đường thẳng $d$ là tiếp tuyến của đường tròn $\left( {O;R} \right)$ tại tiếp điểm là $M$ ta chứng minh $OM \bot d$ tại $M$ và $M \in \left( O \right)$.

Câu hỏi khác