Cho \(M = \dfrac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\dfrac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\) và \(N = \dfrac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\dfrac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\) . Khi \(x + y = 6\) , hãy so sánh \(M\) và \(N\) .
Trả lời bởi giáo viên
Ta có \(M = \dfrac{{{x^2} + {y^2} + xy}}{{{x^2} - {y^2}}}:\dfrac{{{x^3} - {y^3}}}{{{x^2} + {y^2} - 2xy}}\)\( = \dfrac{{{x^2} + xy + {y^2}}}{{{x^2} - {y^2}}}.\dfrac{{{x^2} - 2xy + {y^2}}}{{{x^3} - {y^3}}}\)
\( = \dfrac{{\left( {{x^2} + xy + {y^2}} \right){{\left( {x - y} \right)}^2}}}{{\left( {x - y} \right)\left( {x + y} \right)\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}\) \( = \dfrac{1}{{x + y}} \Rightarrow M = \dfrac{1}{{x + y}}\) .
Và \(N = \dfrac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}:\dfrac{{{x^2} - 2xy + {y^2}}}{{{x^4} - {y^4}}}\)\( = \dfrac{{{x^2} - {y^2}}}{{{x^2} + {y^2}}}.\dfrac{{{x^4} - {y^4}}}{{{x^2} - 2xy + {y^2}}}\) \( = \dfrac{{\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right)}}{{\left( {{x^2} + {y^2}} \right){{\left( {x - y} \right)}^2}}}\)
\( = \dfrac{{\left( {x + y} \right)\left( {{x^2} - {y^2}} \right)}}{{x - y}} = \dfrac{{\left( {x + y} \right)\left( {x - y} \right)\left( {x + y} \right)}}{{x - y}} = {\left( {x + y} \right)^2}\) \( \Rightarrow N = {\left( {x + y} \right)^2}\).
Với \(x + y = 6\) thì \(M = \dfrac{1}{{{{\left( {x + y} \right)}^2}}} = \dfrac{1}{{{6^2}}} = \dfrac{1}{{36}}\) và \(N = {\left( {x + y} \right)^2} = {6^2} = 36\) . Nên \(M < N\) .
Hướng dẫn giải:
Bước 1: Thực hiện phép chia hai phân thức: \(\dfrac{A}{B}:\dfrac{C}{D} = \dfrac{A}{B}.\dfrac{D}{C};\,\,\left( {\dfrac{C}{D} \ne 0} \right)\)
Bước 2: Rút gọn phân thức thu được.
Bước 3: Sử dụng giả thiết \(x + y = 6\) để tính giá trị biểu thức \(M,\,N\) rồi so sánh.