Cho khối chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và có thể tích \(V = \dfrac{{{a^3}\sqrt 3 }}{6}\). Tìm số \(r > 0\) sao cho tồn tại điểm \(J\) nằm trong khối chóp mà khoảng cách từ \(J\) đến các mặt bên và mặt đáy đều bằng \(r\)?
Trả lời bởi giáo viên
Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\) .
Vì khoảng cách từ \(J\) đến các mặt bên và mặt đáy đều bằng \(r\) nên \(J \in SO\).
Gọi \(M\) là trung điểm của \(CD\), trong \(\left( {SOM} \right)\) kẻ \(OH \bot SM\) ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}CD \bot OM\\CD \bot SO\end{array} \right. \Rightarrow CD \bot \left( {SOM} \right) \Rightarrow CD \bot OH\\\left\{ \begin{array}{l}OH \bot CD\\OH \bot SM\end{array} \right. \Rightarrow OH \bot \left( {SCD} \right)\end{array}\)
Trong \(\left( {SOM} \right)\) kẻ \(JK\parallel OH \Rightarrow JK \bot \left( {SCD} \right) \Rightarrow d\left( {J;\left( {SCD} \right)} \right) = JK\).
Có \(d\left( {J;\left( {ABCD} \right)} \right) = JO\).
Theo bài ra ta có \(JK = JO = r\).
Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}}\) \( \Rightarrow \dfrac{{{a^3}\sqrt 3 }}{6} = \dfrac{1}{3}SO.{a^2} \Rightarrow SO = \dfrac{{a\sqrt 3 }}{2}\).
Áp dụng hệ thức lượng trong tam giác vuông ta có: \(OH = \dfrac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}.\dfrac{a}{2}}}{{\sqrt {\dfrac{{3{a^2}}}{4} + \dfrac{{{a^2}}}{4}} }} = \dfrac{{a\sqrt 3 }}{4}\).
Áp dụng định lí Ta-lét ta có
\(\begin{array}{l}\dfrac{{JK}}{{OH}} = \dfrac{{SJ}}{{SO}} \Rightarrow \dfrac{r}{{\dfrac{{a\sqrt 3 }}{4}}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2} - r}}{{\dfrac{{a\sqrt 3 }}{2}}}\\ \Leftrightarrow 2r = \dfrac{{a\sqrt 3 }}{2} - r\\ \Leftrightarrow 3r = \dfrac{{a\sqrt 3 }}{2} \Leftrightarrow r = \dfrac{{a\sqrt 3 }}{6}\end{array}\)