Cho hệ phương trình $\left\{ \begin{array}{l}4\sqrt x - 3\sqrt y = 4\\2\sqrt x + \sqrt y = 2\end{array} \right.$. Biết nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x.y$
Trả lời bởi giáo viên
ĐK: $x \ge 0;y \ge 0$
Ta có $\left\{ \begin{array}{l}4\sqrt x - 3\sqrt y = 4\\2\sqrt x + \sqrt y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4\sqrt x - 3\sqrt y = 4\\4\sqrt x + 2\sqrt y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5\sqrt y = 0\\2\sqrt x + \sqrt y = 2\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}\sqrt y = 0\\2\sqrt x = 2\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 1\end{array} \right.$ (Thỏa mãn)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;0} \right) \Rightarrow x.y = 0.\)