Câu hỏi:
2 năm trước

Cho hàm số f(x)=x2+|x+1|x. Tính đạo hàm của hàm số tại x0=1.

Trả lời bởi giáo viên

Đáp án đúng: d

f(1)=limx(1)f(x)f(1)x+1

Ta có:

\begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{\dfrac{{{x^2} + x + 1}}{x} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{{x^2} + 2x + 1}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{x + 1}}{x} = 0\\\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{\dfrac{{{x^2} - x - 1}}{x} + 1}}{{x + 1}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{{x^2} - 1}}{{x\left( {x + 1} \right)}} = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{x - 1}}{x} = 2\\ \Rightarrow \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} \ne \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}\end{array}

Do đó không tồn tại  \mathop {\lim }\limits_{x \to \left( { - 1} \right)} \dfrac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}}, vậy không tồn tại đạo hàm của hàm số tại {x_0} =  - 1.

Hướng dẫn giải:

Đạo hàm của hàm số y = f\left( x \right) tại điểm x = {x_0}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} (nếu tồn tại).

Câu hỏi khác