Cho hai biểu thức \(B = \left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\) và \(C = \dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\). Chọn câu đúng.
Trả lời bởi giáo viên
\(\begin{array}{l}B = \,\,\left( {\dfrac{2}{3} - 1\dfrac{1}{2}} \right):\dfrac{4}{3} + \dfrac{1}{2}\\ = \left( {\dfrac{2}{3} - \dfrac{3}{2}} \right).\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{6}.\dfrac{3}{4} + \dfrac{1}{2}\\ = \dfrac{{ - 5}}{8} + \dfrac{1}{2}\\ = \dfrac{{ - 1}}{8}.\end{array}\)
\(\begin{array}{l}C = \,\dfrac{9}{{23}}.\dfrac{5}{8} + \dfrac{9}{{23}}.\dfrac{3}{8} - \dfrac{9}{{23}}\\ = \dfrac{9}{{23}}.\left( {\dfrac{5}{8} + \dfrac{3}{8} - 1} \right)\\ = \dfrac{9}{{23}}.\left( {1 - 1} \right)\\ = \dfrac{9}{{23}}.0\\ = 0.\end{array}\)
Vậy \(C = 0;B < 0\)
Hướng dẫn giải:
Áp dụng qui tắc tính giá trị của biểu thức:
Ta thực hiện các phép tính theo thứ tự: Trong ngoặc \( \to \) nhân chia \( \to \) cộng trừ