Cho đường tròn $\left( {O;R} \right)$ có hai đường kính $AB$ và $CD$ vuông góc. Gọi $I$ là điểm trên cung $AC$ sao cho khi vẽ tiếp tuyến qua $I$ và cắt $DC$ kéo dài tại $M$ thì $IC = CM$. Độ dài $OM$ tính theo bán kính là:
Trả lời bởi giáo viên
+) Ta có: \(\widehat {CIM} = \dfrac{1}{2}\widehat {IOC}\) (góc tạo bởi tiếp tuyến và dây cung với góc ở tâm chắn cung $IC$)
\( \Rightarrow \widehat {IOC} = 2\widehat {CIM}\).
Lại có \(\widehat {OCI} = \widehat {CIM} + \widehat {CMI} = 2\widehat {CIM}\) (do \(\Delta CMI\) cân tại \(C\))
Do đó \(\Delta OIC\) đều (vì \(\widehat {OIC}=\widehat {IOC}=\widehat {OCI}\)) \( \Rightarrow \widehat {IOM} = {60^0}\).
+) Xét \(\Delta OIM\) vuông tại \(I\) có:
\(\cos \widehat {IOM} = \dfrac{{OI}}{{OM}} = \dfrac{R}{{OM}} = \dfrac{1}{2} \Rightarrow OM = 2R\).
Hướng dẫn giải:
Chứng minh \(\Delta OIC\) đều, từ đó suy ra độ dài \(OM\).