Cho đoạn mạch điện xoay chiều chỉ có tụ điện với điện dung C = \(\dfrac{{{{10}^{ - 4}}}}{\pi }\)(F). Đặt điện áp xoay chiều có tần số $50 Hz$ vào hai đầu đoạn mạch. Tại thời điểm mà điện áp hai đầu mạch có giá trị 100 \(\sqrt {10} \) V thì cường độ dòng điện trong mạch là \(\sqrt 2 A\). Điện áp hiệu dụng hai đầu tụ điện có giá trị là:
Trả lời bởi giáo viên
Dung kháng của mạch là :
\({Z_C} = \dfrac{1}{{\omega C}} = \dfrac{1}{{2\pi .50.\dfrac{{{{10}^{ - 4}}}}{\pi }}} = 100\Omega \)
Áp dụng hệ thức liên hệ ta được:
\(\begin{array}{l}{\left( {\dfrac{{{u_C}}}{{{U_{0C}}}}} \right)^2} + {\left( {\dfrac{i}{{{I_0}}}} \right)^2} = 1 \leftrightarrow {\left( {\frac{{100\sqrt {10} }}{{100{I_0}}}} \right)^2} + {\left( {\dfrac{{\sqrt 2 }}{{{I_0}}}} \right)^2} = 1 \leftrightarrow \dfrac{{10}}{{I_0^2}} + \dfrac{2}{{I_0^2}} = 1\\ \to {I_0} = 2\sqrt 3 A \to {U_{0C}} = {I_0}{Z_C} = 200\sqrt 3 V \to {U_C} = \dfrac{{{U_{0C}}}}{{\sqrt 2 }} = \dfrac{{200\sqrt 3 }}{{\sqrt 2 }} = 100\sqrt 6 V\end{array}\)
Hướng dẫn giải:
+ Áp dụng công thức tính dung khác :
\({Z_C} = \dfrac{1}{{\omega C}}\)
+ Áp dụng hệ thức liên hệ ta được:
\({\left( {\dfrac{{{u_C}}}{{{U_{0C}}}}} \right)^2} + {\left( {\dfrac{i}{{{I_0}}}} \right)^2} = 1\)
+ Áp dụng mối liên hệ giữa cường U0 - I0 - ZC:
\({Z_C} = \dfrac{{{U_0}}}{{{I_0}}}\)