Câu hỏi:
1 năm trước
Cho \(\Delta ABC = \Delta MNP\) trong đó \(\widehat A = 30^\circ ;\widehat P = 60^\circ .\) So sánh các góc \(N;\,M;\,P.\)
Trả lời bởi giáo viên
Đáp án đúng: c
Vì \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M = 30^\circ ;\,\widehat C = \widehat P = 60^\circ ;\,\widehat B = \widehat N.\)
Xét tam giác \(MNP\) có \(\widehat M + \widehat N + \widehat P = 180^\circ \)\( \Rightarrow \widehat N = 180^\circ - \widehat M - \widehat P\)\( = 180^\circ - 30^\circ - 60^\circ = 90^\circ .\)
Vậy \(\widehat N > \widehat P > \widehat M.\)
Hướng dẫn giải:
Áp dụng định nghĩa hai tam giác bằng nhau và định lý về tổng ba góc trong một tam giác.