Câu hỏi:
2 năm trước
Cho \(100\) tia gồm \(O{x_2},O{x_3},....,O{x_{99}}\) nằm giữa hai tia \(O{x_1}\) và \(O{x_{100}}\). Hỏi có bao nhiêu góc được tạo thành?
Trả lời bởi giáo viên
Đáp án đúng: c
- \(O{x_1}\) cùng với các tia \(O{x_2},O{x_3},....,O{x_{100}}\) tạo thành \(99\) góc.
- \(O{x_2}\) cùng với các tia \(O{x_3},....,O{x_{100}}\) tạo thành 98 góc.
- \(O{x_3}\) cùng với các tia \(O{x_4},O{x_5},....,O{x_{100}}\) tạo thành \(97\)góc.
…………
\(O{x_{99}}\) cùng tia \(O{x_{100}}\) tạo thành 1 góc.
Vậy ta có tất cả: \(1 + 2 + 3 + ... + 99 = \dfrac{{100.99}}{2} = 4950\) góc.
Hướng dẫn giải:
Áp dụng định nghĩa góc, tính chất của dãy số cách đều.