Câu hỏi:
1 năm trước

Bốn lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) trồng được \(172\) cây xung quanh trường. Tính số cây của lớp \(7{A_4}\) đã trồng được biết số cây của lớp \(7{A_1}\) và \(7{A_2}\) tỉ lệ với \(3\) và \(4\), số cây của lớp \(7{A_2}\) và \(7{A_3}\) tỉ lệ với \(5\) và \(6\), số cây của lớp \(7{A_3}\) và \(7{A_4}\) tỉ lệ với \(8\) và \(9\).

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi \(x;y;z;t\) lần lượt là số cây trồng được của lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) \(\left( {x;y;z;t \in {\mathbb{N}^*}} \right)\)

Ta có \(\dfrac{x}{y} = \dfrac{3}{4};\dfrac{y}{z} = \dfrac{5}{6};\dfrac{z}{t} = \dfrac{8}{9}\) và \(x + y + z + t = 172\).

Vì \(\dfrac{x}{y} = \dfrac{3}{4}\) suy ra \(\dfrac{x}{3} = \dfrac{y}{4}\) hay \(\dfrac{x}{{15}} = \dfrac{y}{{20}}\,\left( 1 \right)\)

Vì \(\dfrac{y}{z} = \dfrac{5}{6}\) suy ra \(\dfrac{y}{5} = \dfrac{z}{6}\) hay \(\dfrac{z}{{24}} = \dfrac{y}{{20}}\,\left( 2 \right)\)

Vì \(\dfrac{z}{t} = \dfrac{8}{9}\) suy ra \(\dfrac{z}{8} = \dfrac{t}{9}\) hay \(\dfrac{z}{{24}} = \dfrac{t}{{27}}\,\left( 3 \right)\)

Từ \(\left( 1 \right);\left( 2 \right);\left( 3 \right)\) ta có \(\dfrac{x}{{15}} = \dfrac{y}{{20}} = \dfrac{z}{{24}} = \dfrac{t}{{27}}\)

Với \(x + y + z + t = 172\), áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{{15}} = \dfrac{y}{{20}} = \dfrac{z}{{24}} = \dfrac{t}{{27}} = \dfrac{{x + y + z + t}}{{15 + 20 + 24 + 27}} = \dfrac{{172}}{{86}} = 2\)

Suy ra \(\dfrac{t}{{27}} = 2\) nên \(t = 27.2 = 54\,\left( {TM} \right)\)

Số cây lớp \(7{A_4}\) trồng được là \(54\) cây.

Hướng dẫn giải:

+ Gọi \(x;y;z;t\) lần lượt là số cây trồng được của lớp \(7{A_1};\,7{A_2};7{A_3};7{A_4}\) \(\left( {x;y;z;t \in {\mathbb{N}^*}} \right)\)

+  Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.

+ Sử dụng tính chất dãy tỉ số bằng nhau.

Câu hỏi khác