Biết rằng hệ bất phương trình \(\left\{ \begin{array}{l}x - 1 < 2x - 3\\\dfrac{{5 - 3x}}{2} \le x - 3\\3x \le x + 5\end{array} \right.\) có tập nghiệm là một đoạn \(\left[ {a;\,\,b} \right]\). Giá trị của biểu thức \(a + b\) bằng:
Trả lời bởi giáo viên
Theo đề bài, ta có:
\(\left\{ \begin{array}{l}x - 1 < 2x - 3\\\dfrac{{5 - 3x}}{2} \le x - 3\\3x \le x + 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x - 1 < 2x - 3\\5 - 3x \le 2x - 6\\3x \le x + 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 2\\5x \ge 11\\2x \le 5\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x > 2\\x \ge \dfrac{{11}}{5}\\x \le \dfrac{5}{2}\end{array} \right.\)\( \Leftrightarrow \dfrac{{11}}{5} \le x \le \dfrac{5}{2}\)
Vậy hệ bất phương trình có tập nghiệm \(S = \left[ {\dfrac{{11}}{5};\,\,\dfrac{5}{2}} \right]\)\( \Rightarrow a = \dfrac{{11}}{5},\,\,b = \dfrac{5}{2}\)
\( \Rightarrow a + b = \dfrac{{11}}{5} + \dfrac{5}{2} = \dfrac{{47}}{{10}}\)
Hướng dẫn giải:
Giải hệ bất phương trình để tìm tập nghiệm. Xác định được \(a,\,\,b\) để tính giá trị của biểu thức.