Biết hai hàm số $y = {a^x}$ và $y = f\left( x \right)$ có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng $d:y = - x$. Tính $f\left( { - {a^3}} \right).$
Trả lời bởi giáo viên
Giả sử \(M\left( {{x_M};{y_M}} \right)\) là điểm thuộc hàm số \(y = {a^x}\); \(N\left( {{x_0};{y_0}} \right)\) là điểm đối xứng của \(M\) qua đường thẳng \(y = - x\).
Gọi \(I\) là trung điểm của \(MN \Rightarrow I\left( {\dfrac{{{x_M} + {x_0}}}{2};\dfrac{{{y_M} + {y_0}}}{2}} \right)\).
Vì \(M,{\rm{ }}N\) đối xứng nhau qua $d$ $ \Rightarrow \left\{ \begin{array}{l}I \in d\\\overrightarrow {MN} //\overrightarrow {{n_d}} \end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{{y_M} + {y_0}}}{2} = - \dfrac{{{x_M} + {x_0}}}{2}\\\dfrac{{{x_M} - {x_0}}}{1} = \dfrac{{{y_M} - {y_0}}}{1}\end{array} \right.$ $ \Leftrightarrow \left\{ \begin{array}{l}{x_0} = - {y_M}\\{y_0} = - {x_M}\end{array} \right.$
Ta có \(M\left( {{x_M};{y_M}} \right) \in \) đồ thị \(y = {a^x}\) nên \({y_M} = {a^{{x_M}}}\).
Do đó ${x_0} = - {y_M} = - {a^{{x_M}}} = - {a^{ - {y_0}}}$$ \Rightarrow - {y_0} = {\log _a}\left( { - {x_0}} \right) \Leftrightarrow {y_0} = - {\log _a}\left( { - {x_0}} \right)$.
Điều này chứng tỏ điểm \(N\) thuộc đồ thị hàm số $f\left( x \right) = - {\log _a}\left( { - x} \right)$.
Khi đó \(f\left( { - {a^3}} \right) = - {\log _a}{a^3} = - 3.\)
Hướng dẫn giải:
- Tìm hàm số \(y = f\left( x \right)\).
- Tính giá trị \(f\left( { - {a^3}} \right)\) theo công thức vừa tìm được ở trên.