Biết \(\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=a\ln 5+b\ln 3+c}\) trong đó a, b, c là các số nguyên. Giá trị biểu thức \(T=a+b+c\) là
Trả lời bởi giáo viên
Đặt \({{x}^{2}}+9=t\Rightarrow 2xdx=dt\Rightarrow xdx=\frac{1}{2}dt\).
Đổi cận:
$\begin{array}{l}
x = 0 \Rightarrow t = 9\\
x = 4 \Rightarrow t = 25
\end{array}$
Khi đó, ta có: \(I=\int\limits_{0}^{4}{x\ln ({{x}^{2}}+9)dx=}\frac{1}{2}\int\limits_{9}^{25}{\ln tdt}=\frac{1}{2}\left[ \left. t.\ln \left| t \right| \right|_{9}^{25}-\int_{9}^{25}{td(\ln t)} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{t.\frac{1}{t}dt} \right]\)
\(=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\int_{9}^{25}{dt} \right]=\frac{1}{2}\left[ t.\ln \left. t \right|_{9}^{25}-\left. t \right|_{9}^{25} \right]=\frac{1}{2}\left[ \left( 25\ln 25-9\ln 9 \right)-(25-9) \right]=25\ln 5-9\ln 3-8\)
Suy ra, \(a=25,\,b=-9,\,c=-8\Rightarrow T=a+b+c=8\)
Hướng dẫn giải:
Sử dụng kết hợp các phương pháp đổi biến và từng phần để tính tích phân.