Ba tấm vải dài tổng cộng \(420m.\) Sau khi bán \(\dfrac{1}{7}\) tấm vải thứ nhất, \(\dfrac{2}{{11}}\) tấm vải thứ hai và \(\dfrac{1}{3}\) tấm vải thứ ba thì chiều dài còn lại của ba tấm vải bằng nhau. Hỏi tấm vải thứ hai dài bao nhiêu mét?
Trả lời bởi giáo viên
Gọi \(x;y;z\) lần lượt là độ dài của ba tấm vải ban đầu \(\left( {0 < x;y;z < 420} \right).\)
Sau khi bán \(\dfrac{1}{7}\) tấm vải thứ nhất thì độ dài của tấm vải thứ nhất còn \(x - \dfrac{1}{7}x = \dfrac{{6x}}{7}\,\,\left( m \right).\)
Sau khi bán \(\dfrac{2}{{11}}\) tấm vải thứ hai thì độ dài của tấm vải thứ hai còn \(y - \dfrac{2}{{11}}y = \dfrac{{9y}}{{11}}\,\left( m \right).\)
Sau khi bán \(\dfrac{1}{3}\) tấm vải thứ ba thì độ dài của tấm vải thứ hai còn \(z - \dfrac{1}{3}z = \dfrac{{2z}}{3}\,\left( m \right).\)
Sau khi bán thì độ dài còn lại của ba tấm vải bằng nhau nên ta có \(\dfrac{{6x}}{7} = \dfrac{{9y}}{{11}} = \dfrac{{2z}}{3}\)
\( \Rightarrow \dfrac{6x}{{7.18}} = \dfrac{9y}{{11.18}} = \dfrac{2z}{{3.18}}\)
\( \Rightarrow \dfrac{x}{{21}} = \dfrac{y}{{22}} = \dfrac{z}{{27}}\).
Tổng độ dài ba tấm vải ban đầu là \(420\) nên \(x + y + z + t = 420.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{{21}} = \dfrac{y}{{22}} = \dfrac{z}{{27}} = \dfrac{{x + y + z}}{{21 + 22 + 27}} = \dfrac{{420}}{{70}} = 6\).
Suy ra \(\dfrac{y}{{22}} = 6\) nên \(y = 6.22 = 132\,\,\left( {TM} \right)\).
Vậy tấm vải thứ hai dài \(132\) mét.
Hướng dẫn giải:
+ Gọi \(x;y;z\) lần lượt là độ dài của ba tấm vải ban đầu \(\left( {0 < x;y;z < 420} \right).\)
+ Áp dụng tính chất về tỉ số các giá trị của hai đại lượng tỉ lệ thuận.
+ Sử dụng tính chất dãy tỉ số bằng nhau.