Viết phương trình y = ax + b của các đường thẳng: a) Đi qua hai điểm A(4;3), B(2 ; -1); b) Đi qua điểm A(1 ; -1) và song song với Ox.
2 câu trả lời
Đáp án:
a)
Đi qua A(4;3) nên
3 = 4a + b
Qua B(2;-1) nên
-1 = 2a + b
=> Ta có hệ
3 = 4a + b
-1 = 2a + b
=>
a = 2
b = -5
Đáp án:
\(\eqalign{ & a)\,\,y = 2x - 5 \cr & b)\,\,y = - 1. \cr} \)
Giải thích các bước giải:
\(\eqalign{ & y = ax + b \cr & a)\,\,Di\,\,qua\,\,A\left( {4;3} \right) \Rightarrow 3 = 4a + b \cr & \,\,\,\,\,Di\,\,qua\,\,B\left( {2; - 1} \right) \Rightarrow - 1 = 2a + b \cr & \Rightarrow \left\{ \matrix{ 4a + b = 3 \hfill \cr 2a + b = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = 2 \hfill \cr b = - 5 \hfill \cr} \right. \cr & \Rightarrow y = 2x - 5 \cr & b)\,\,Song\,\,song\,\,voi\,\,Ox \Rightarrow a = 0 \Rightarrow y = b \cr & Di\,\,qua\,\,A\left( {1; - 1} \right) \Rightarrow - 1 = b \cr & Vay\,\,y = - 1. \cr} \)