GHI LỜI GIẢI VÀ TÓM TẮT
Dùng mặt phẳng nghiêng đưa một vật có khối lượng 1 tạ lên cao 2m bằng 1 lực kéo 500N,bt chiều dài của mặt phẳng nghiêng là 5m
Tính hiệu suất của mặt phẳng nghiêng
Tính lực cản lên vật trong trường hợp đó
GIẢI CHI TIẾT VÀ ĐÚNG
CẦN GẤP
THANKS
2 câu trả lời
Đáp án:
\(80\% \) ; \(100N\)
Giải thích các bước giải:
Tóm tắt:
\(\begin{array}{l}
1ta = 100kg\\
h = 2m\\
F = 500N\\
l = 5m\\
H = ?\\
{F_c} = ?
\end{array}\)
Giải:
Công có ích là:
\({A_i} = Ph = 1000.2 = 2000J\)
Công toàn phần là:
\({A_{tp}} = Fl = 500.5 = 2500J\)
Hiệu suất mặt phẳng nghiêng là:
\(H = \dfrac{{{A_i}}}{{{A_{tp}}}}.100\% = 80\% \)
Lực cản là:
\({F_c} = \dfrac{{{A_{tp}} - {A_i}}}{l} = \dfrac{{2500 - 2000}}{5} = 100N\)
Đáp án:
`H=80%`
`F_c=100N`
Giải thích các bước giải:
Tóm tắt
Dùng mặt phẳng nghiêng.
$h=2m$
$m=1 tạ=100kg$
$F_k=500N$
$s=5m$
`H=?%`
$F_c=?N$
Giải
Dùng mặt phẳng nghiêng thì công kéo vật trên mặt phẳng nghiêng không có lực cản bằng với công kéo vật trực tiếp.
Công có ích là:
$A_{ci}=Fs=Ph=10mh=10.100.2=2000(J)$
Công toàn phần là:
$A_{tp}=F_ks=500.5=2500(J)$
Hiệu suất mặt phẳng nghiêng là:
`H=(A_{ci})/(A_{tp}).100%=(2000)/(2500).100%=80(%)`
Công hao phí là:
$A_{hp}=A_{tp}-A_{ci}=2500-2000=500(J)$
Lực cản trong trường hợp đó là:
$F_c=\dfrac{A_{hp}}{s}=\dfrac{500}{5}=100(N)$