2 câu trả lời
Bạn tham khảo :
$A = 2+2^2+2^3+...+2^{30}$
$2A = 2^2 + 2^3 + 2^4 + ... 2^{31}$
$2A - A = ( 2^2 + 2^3 + 2^4 + ... 2^{31}) - ( 2+2^2+2^3+...+2^{30})$
$A = (2^2 - 2^2) + (2^3 - 2^3) + (2^4 - 2^4) + ... + (2^{31} -2 )$
$A = 2^{31} - 2$
Ta có :
$ 2^{31} - 2 = 2^{31} + 2 - 2$
Mà $A + 2 = 2^{31} -2+2 = 2^{31}$
Vậy $A+2 = 2^{31}$
Ta có
$A = 2 + 2^2 + \cdots + 2^{30}$
$2A = 2^2 + 2^3 + \cdots + 2^{30} + 2^{31}$
Vậy
$A = 2A - A = (2^2 + 2^3 + \cdots + 2^{30} + 2^{31}) - (2 + 2^2 + \cdots + 2^{30}) = 2^{31} - 2$
Khi đó, ta có
$A+2 = 2^{31}-2 + 2 = 2^{31}$