Câu hỏi:
1 năm trước

Từ vị trí \(A\) người ta quan sát một cây cao (hình vẽ).

Đề kiểm tra giữa học kì 1 - Đề số 3 - ảnh 1

      Biết \(AH = 4{\rm{m}},{\rm{ }}HB = 20{\rm{m}},{\rm{ }}\widehat {BAC} = {45^0}\).

      Chiều cao của cây gần nhất với giá trị nào sau đây?

Trả lời bởi giáo viên

Đáp án đúng: b

Trong tam giác \(AHB\), ta có \(\tan \widehat {ABH} = \dfrac{{AH}}{{BH}} = \dfrac{4}{{20}} = \dfrac{1}{5}\) \( \Rightarrow \widehat {ABH} \approx {11^0}19\)

Suy ra \(\widehat {ABC} = {90^0} - \widehat {ABH} = {78^0}41'\).

Suy ra \(\widehat {ACB} = {180^0} - \left( {\widehat {BAC} + \widehat {ABC}} \right) = {56^0}19'\).

Áp dụng định lý sin trong tam giác \(ABC\), ta được \(\dfrac{{AB}}{{\sin \widehat {ACB}}} = \dfrac{{CB}}{{\sin \widehat {BAC}}}\)\( \Rightarrow CB = \dfrac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} \approx 17{\rm{m}}\)

Hướng dẫn giải:

Giải tam giác \(ABC\) và kết luận.

Câu hỏi khác