Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:
Trả lời bởi giáo viên
Mặt cầu $\left( S \right)$ có tâm $I\left( { - 1;2; - 3} \right)$ và bán kính $R = 3$
Ta có : $M( - 1;2;0) \in \left( S \right)$
Gọi $\left( \alpha \right)$ là mặt phẳng tiếp diện của $\left( S \right)$ tại $M$.
Khi đó $\left( \alpha \right)$ đi qua $M$ và nhận $\overrightarrow {IM} \left( {0;0;3} \right)$ làm véctơ pháp tuyến
Vậy $\left( \alpha \right):0(x + 1) + 0(y - 2) + 3(z - 0) = 0 \Leftrightarrow z = 0$
Hướng dẫn giải:
+ Tìm tọa độ tâm $I$ và bán kính $R$ của mặt cầu $\left( S \right)$
+ Phương trình tiếp diện của $\left( S \right)$ tại $M \in \left( S \right)$ đi qua $M$ và nhận $\overrightarrow {IM} $ làm véctơ pháp tuyến