Câu hỏi:
2 năm trước
Tính tổng \(T\) tất cả các nghiệm của phương trình \({4.9^x} - {13.6^x} + {9.4^x} = 0\).
Trả lời bởi giáo viên
Đáp án đúng: a
\(\begin{array}{l}{4.9^x} - {13.6^x} + {9.4^x} = 0 \Leftrightarrow 4 - 13.{\left( {\dfrac{2}{3}} \right)^x} + 9.{\left( {\dfrac{2}{3}} \right)^{2x}} = 0 \Leftrightarrow \left[ \begin{array}{l}{\left( {\dfrac{2}{3}} \right)^x} = 1\\{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{4}{9}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right. \Rightarrow T = 0 + 2 = 2\end{array}\)
Hướng dẫn giải:
- Chia cả hai vế cho $9^x$.
- Giải phương trình bậc hai ẩn ${\left( {\dfrac{2}{3}} \right)^x}$.
Giải thích thêm:
Các em cũng có thể đặt $t={\left( {\dfrac{2}{3}} \right)^x}$ để tiện trình bày, tránh nhầm lẫn khi tính toán.