Câu hỏi:
2 năm trước
Tính $\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}}$ bằng?
Trả lời bởi giáo viên
Đáp án đúng: c
$\mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 6x + 5}}{{{x^3} + 2{x^2} - 1}} = \mathop {\lim }\limits_{x \to - 1} \dfrac{{(x + 1)(x + 5)}}{{(x + 1)({x^2} + x - 1)}} = \mathop {\lim }\limits_{x \to - 1} \dfrac{{x + 5}}{{{x^2} + x - 1}} = \dfrac{{ - 1 + 5}}{{{{( - 1)}^2} + ( - 1) - 1}} = - 4$
Hướng dẫn giải:
- Rút gọn phân thức.
- Khử dạng $\dfrac{0}{0}$.