Câu hỏi:
2 năm trước

Tìm tất cả các giá trị của $m$ để hàm số $y =  - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$

Trả lời bởi giáo viên

Đáp án đúng: c

TXĐ $D = \mathbb{R}$

$y' =  - {x^2} + \dfrac{2}{3}mx \Rightarrow y'' =  - 2x + \dfrac{2}{3}m$

Hàm số đã cho đạt cực đại tại $x = 2$

$ \Leftrightarrow \left\{ \begin{gathered}  y'(2) = 0 \hfill \\ y''\left( 2 \right) < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} - {2^2} + \dfrac{2}{3}m.2 = 0 \hfill \\ - 2.2 + \dfrac{2}{3}m. < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} - 4 + \dfrac{4}{3}m = 0 \hfill \\- 4 + \dfrac{2}{3}m < 0 \hfill \\ \end{gathered}  \right. $ $\Leftrightarrow \left\{ \begin{gathered} m = 3 \hfill \\m < 6 \hfill \\ \end{gathered}  \right. \Leftrightarrow m = 3$

Hướng dẫn giải:

- Bước 1: Tính $y',y''$.

- Bước 2: Nêu điều kiện để $x = {x_0}$ là cực trị của hàm số:

+ $x = {x_0}$ là điểm cực đại nếu $\left\{ \begin{gathered} f'\left( {{x_0}} \right) = 0 \hfill \\f''\left( {{x_0}} \right) < 0 \hfill \\ \end{gathered}  \right.$

+ $x = {x_0}$ là điểm cực tiểu nếu $\left\{ \begin{gathered}f'\left( {{x_0}} \right) = 0 \hfill \\ f''\left( {{x_0}} \right) > 0 \hfill \\ \end{gathered}  \right.$

- Bước 3: Kết luận. 

Câu hỏi khác