Tìm một số có hai chữ số biết rằng: Hiệu của số ban đầu với số đảo ngược của nó bằng 18 (số đảo ngược của một số là số thu được bằng cách viết các chữ số của số đó theo thứ tự ngược lại) và tổng của số ban đầu với bình phương số đảo ngược của nó bằng 618.
Trả lời bởi giáo viên
Gọi số có hai chữ số cần tìm là: \(\overline {ab} \left( {a \in {\mathbb{N}^*},b \in \mathbb{N},\;\;0 < a \le 9,\;0 \le b \le 9} \right).\)
Số đảo ngược của số ban đầu là: \(\overline {ba} \;\;\left( {b \ne 0} \right)\)
Theo đề bài, hiệu của số ban đầu với số đảo ngược của nó bằng 18 nên ta có:
\(\begin{array}{l}\overline {ab} - \overline {ba} = 18\,\,\\ \Leftrightarrow 10a + b - \left( {10b + a} \right) = 18\\ \Leftrightarrow 10a + b - 10b - a = 18\\ \Leftrightarrow a - b = 2\,\,\,\left( 1 \right)\end{array}\)
Tổng của số ban đầu với bình phương số đảo ngược của nó bằng 618 nên ta có:
\(\begin{array}{l}\overline {ab} + {\left( {\overline {ba} } \right)^2} = 618\\ \Leftrightarrow 10a + b + {\left( {10b + a} \right)^2} = 618\\ \Leftrightarrow 10a + b + 100{b^2} + 20ab + {a^2} = 618\,\,\,\left( 2 \right)\end{array}\)
Từ (1) và (2) ta có hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}a - b = 2\\10a + b + 100{b^2} + 20ab + {a^2} = 618\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = b + 2\\10\left( {b + 2} \right) + b + 100{b^2} + 20\left( {b + 2} \right)b + {\left( {b + 2} \right)^2} = 618\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = b + 2\\10b + 20 + b + 100{b^2} + 20{b^2} + 40b + {b^2} + 4b + 4 = 618\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = b + 2\\121{b^2} + 55b - 594 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}a = b + 2\\\left[ \begin{array}{l}b = 2\,\,\,\,\left( {tm} \right)\\b = - \dfrac{{27}}{{11}}\,\,\,\left( {ktm} \right)\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 2\\a = 4\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy số cần tìm là: 42.
Hướng dẫn giải:
Gọi số có hai chữ số cần tìm là: \(\overline {ab} \left( {a \in {\mathbb{N}^*},b \in \mathbb{N},\;\;0 < a \le 9,\;0 \le b \le 9} \right).\)
Số đảo ngược của số ban đầu là: \(\overline {ba} \;\;\left( {b \ne 0} \right)\)
Từ các giả thiết bài toán, lập hệ phương trình và suy ra các số cần tìm.