Câu hỏi:
2 năm trước
Cho hệ phương trình \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right.\). Nghiệm của hệ phương trình là $\left( {x;y} \right)$, tính $x - y$
Trả lời bởi giáo viên
Đáp án đúng: b
Ta có \(\left\{ \begin{array}{l}2x - 3y = 1\\4x + y = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y = 1\\12x + 3y = 27\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}2x - 3y = 1\\2x - 3y+12x+3y =1+ 27\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 3y = 1\\14x = 28\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\)
Vậy hệ đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {2;1} \right)\)
$ \Rightarrow x - y = 2 - 1 = 1$.