Tìm \(m\) để hai phương trình \({x^2} + mx + 2 = 0\) và \({x^2} + 2x + m = 0\) có ít nhất một nghiệm chung.
Trả lời bởi giáo viên
Gọi \({x_0}\) là nghiệm chung của hai phương trình thì \({x_0}\) phải thỏa mãn hai phương trình trên.
Thay \(x = {x_0}\) vào hai phương trình trên ta được \(\left\{ \begin{array}{l}{x_0}^2 + m{x_0} + 2 = 0\\{x_0}^2 + 2{x_0} + m = 0\end{array} \right. \) \(\Rightarrow (m - 2){x_0} + 2 - m = 0\) \(\Leftrightarrow (m - 2)(x_0-1)= 0\)
+) Nếu \(m = 2\) thì \(0 = 0\) (luôn đúng) hay hai phương trình trùng nhau.
Lúc này phương trình \({x^2} + 2x + 2 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} = - 1\) vô nghiệm nên cả hai phương trình đều vô nghiệm.
Vậy \(m = 2\) không thỏa mãn.
+) Nếu \(m \ne 2\) thì \({x_0} = 1\).
Thay \({x_0} = 1\) vào phương trình \({x_0}^2 + m{x_0} + 2 = 0\) ta được \(1 + m + 2 = 0 \Leftrightarrow m = - 3\).
Vậy \(m = - 3\) thì hai phương trình có nghiệm chung.
Hướng dẫn giải:
Hai phương trình có nghiệm chung thì nghiệm chung đó phải thoả mãn cả hai phương trình