Câu hỏi:
1 năm trước
Tìm hệ số của ${x^{12}}$ trong khai triển ${\left( {2x - {x^2}} \right)^{10}}.$
Trả lời bởi giáo viên
Đáp án đúng: b
Theo khai triển nhị thức Newton, ta có
${\left( {2x - {x^2}} \right)^{10}} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} .{\left( {2x} \right)^{10\, - \,k}}.{\left( { - \,{x^2}} \right)^k} $ $= \sum\limits_{k\, = \,0}^{10} {C_{10}^k} {.2^{10\, - \,k}}.{\left( { - \,1} \right)^k}.{x^{10\, + \,k}}.$
Hệ số của ${x^{12}}$ ứng với $10+k=12\Leftrightarrow k=2\,\,\xrightarrow{{}}\,\,$Hệ số cần tìm là $C_{10}^2{.2^8}.{\left( { - \,1} \right)^2} = C_{10}^2{.2^8}.$
Hướng dẫn giải:
Sử dụng công thức tổng quát ${{\left( a+b \right)}^{n}}=\sum\limits_{k\,=\,0}^{n}{C_{n}^{k}}.{{a}^{n\,-\,k}}.{{b}^{k}}\,\,\xrightarrow{{}}$ Tìm hệ số của số hạng cần tìm.