Tia sáng đi từ không khí khi tới gặp mặt phân cách giữa không khí và môi trường trong suốt có chiết suất n = 1,5. Phải điều chỉnh góc tới đến giá trị nào thì góc tới gấp hai lần góc khúc xạ?
Trả lời bởi giáo viên
Hướng dẫn giải:
Theo định luật khúc xạ ánh sáng, ta có:
\({n_1}\sin i = {n_2}{\mathop{\rm s}\nolimits} {\rm{inr}}\)
Theo đề bài: \(i{\rm{ }} = {\rm{ }}2r\)
\(1\sin i = 1,5{\mathop{\rm s}\nolimits} {\rm{in}}\frac{i}{2} \leftrightarrow 2\sin \frac{i}{2}{\rm{cos}}\frac{i}{2} = 1,5.\sin \frac{i}{2}\) (1)
Do \(i{\rm{ }} = {\rm{ }}2r\) nên \(i \ne 0\)
\( \to (1) \leftrightarrow 2c{\rm{os}}\frac{i}{2} = 1,5 \to c{\rm{os}}\frac{i}{2} = \frac{3}{4} \to \frac{i}{2} = 41,{4^0} \to i = 82,{8^0}\)
Hướng dẫn giải:
Phương pháp:
+ Vận dụng biểu thức định luật khúc xạ ánh sáng: \({n_1}\sin i = {n_2}{\mathop{\rm s}\nolimits} {\rm{inr}}\)
+ Sử dụng hệ thức lượng trong tam giác