Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\sqrt 3 \sin 2x - \cos 2x + 1 = 0\\ \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 2x - \dfrac{1}{2}\cos 2x + \dfrac{1}{2} = 0\\ \Leftrightarrow \sin 2x.\cos \dfrac{\pi }{6} - \cos 2x.\sin \dfrac{\pi }{6} = - \dfrac{1}{2}\\ \Leftrightarrow \sin \left( {2x - \dfrac{\pi }{6}} \right) = \sin \left( { - \dfrac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{\pi }{6} = - \dfrac{\pi }{6} + k2\pi \\2x - \dfrac{\pi }{6} = \dfrac{{7\pi }}{6} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \dfrac{{4\pi }}{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \dfrac{{2\pi }}{3} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Hướng dẫn giải:
- Bước 1: Kiểm tra điều kiện có nghiệm của phương trình: \({a^2} + {b^2} \ge {c^2}\).
- Bước 2: Chia hai vế của phương trình cho \(\sqrt {{a^2} + {b^2}} \) thì phương trình có dạng:
\(\dfrac{a}{{\sqrt {{a^2} + {b^2}} }}\cos x + \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}\sin x = \dfrac{c}{{\sqrt {{a^2} + {b^2}} }}\).
- Bước 3: Đặt \(\sin \alpha = \dfrac{a}{{\sqrt {{a^2} + {b^2}} }},\cos \alpha = \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}\) thì phương trình trở thành \(\sin \left( {x + \alpha } \right) = \dfrac{c}{{\sqrt {{a^2} + {b^2}} }}\).
- Bước 4: Giải phương trình lượng giác cơ bản trên tìm \(x\).