Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\,\,\sqrt 3 \cos 3x + \sin 3x = \sqrt 2 \\ \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\cos 3x + \dfrac{1}{2}\sin 3x = \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin 3x.\cos \dfrac{\pi }{3} + \cos 3x.\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 2 }}{2}\\ \Leftrightarrow \sin \left( {3x + \dfrac{\pi }{3}} \right) = \sin \left( {\dfrac{\pi }{4}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x + \dfrac{\pi }{3} = \dfrac{\pi }{4} + k2\pi \\3x + \dfrac{\pi }{3} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}3x = - \dfrac{\pi }{{12}} + k2\pi \\3x = \dfrac{{5\pi }}{{12}} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \dfrac{\pi }{{36}} + \dfrac{{k2\pi }}{3}\\x = \dfrac{{5\pi }}{{36}} + \dfrac{{k2\pi }}{3}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Hướng dẫn giải:
Chia cả hai vế cho \(2\) đưa về phương trình lượng giác cơ bản.