Một khu đất hình chữ nhật có chiều dài $60$m, rộng $24$m. Người ta chia thành những thửa đất hình vuông bằng nhau, để mỗi thửa đất đó có diện tích lớn nhất thì độ dài cạnh mỗi thửa đất đó là bao nhiêu?
Trả lời bởi giáo viên
Gọi cạnh mỗi thửa đất hình vuông chia được là $x$$\left( m \right)$
Để diện tích các thửa đất đó là lớn nhất thì $x$ phải lớn nhất
Vì các thửa đất đó được chia ra từ đám đất hình chữ nhật ban đầu có chiều dài $60$m và $24$m
Nên $x$ phải là ước của $60$ và $24$
Hay $x \in $ƯC$\left( {60;24} \right)$
Vì $x$ là lớn nhất nên $x = $ ƯCLN$(60;24)$
Ta có: $60 = {2^2}.3.5$; $24 = {2^3}.3$
$ \Rightarrow x = $ ƯCLN$\left( {60;24} \right) = {2^2}.3 = 12.$
Vậy mỗi thửa đất hình vuông đó có độ dài cạnh lớn nhất là $12m.$
Hướng dẫn giải:
+ Gọi cạnh mỗi thửa đất hình vuông chia được là $x$$\left( m \right)$
+ Diện tích của thửa ruộng lớn nhất khi $x$ lớn nhất.
+ Đưa về bài toán tìm ƯCLN: \(x = \) ƯCLN\(\left( {60;24} \right)\)