Câu hỏi:
2 năm trước
Lập phương trình chính tắc của hypebol $(H)$ biết $(H)$ có trục thực dài bằng $8$ và tâm sai $e = \dfrac{5}{4}$.
Trả lời bởi giáo viên
Đáp án đúng: d
$(H)$ có trục thực dài bằng $8$ và tâm sai $e = \dfrac{5}{4}$$ \Rightarrow a = 4,\,\,e = \dfrac{c}{a} = \dfrac{5}{4} $ $\Rightarrow c = \dfrac{5}{4}.a = \dfrac{5}{4}.4 = 5$
Mà ${a^2} + {b^2} = {c^2} \Leftrightarrow {4^2} + {b^2} = {5^2} \Rightarrow b = 3$
Phương trình chính tắc của $(H):$ $\dfrac{{{x^2}}}{{16}} - \dfrac{{{y^2}}}{9} = 1$.
Hướng dẫn giải:
Hypebol $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ có độ dài trục thực bằng $2a,$ tâm sai \(e = \dfrac{c}{a}\).