Trả lời bởi giáo viên
Đáp án đúng: c
\(y' = \sqrt {{x^2} + 1} + x.\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}\) \( = \dfrac{{{x^2} + 1 + {x^2}}}{{\sqrt {{x^2} + 1} }} = \dfrac{{2{x^2} + 1}}{{\sqrt {{x^2} + 1} }}\)
\(y'' = \dfrac{{4x\sqrt {{x^2} + 1} - \left( {2{x^2} + 1} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}}\) \( = \dfrac{{\dfrac{{4x\left( {{x^2} + 1} \right) - x\left( {2{x^2} + 1} \right)}}{{\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}}\) \( = \dfrac{{4{x^3} + 4x - 2{x^3} - x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}\) \( = \dfrac{{2{x^3} + 3x}}{{\left( {{x^2} + 1} \right)\sqrt {{x^2} + 1} }}\)
Hướng dẫn giải:
Sử dụng các quy tắc tính đạo hàm của 1 tích, đạo hàm của 1 thương. Lưu ý các hàm số hợp.