Trả lời bởi giáo viên
Đáp án đúng: b
Xét phương án B ta thấy $y' =4x^3-4x=4x(x^2-1)= 4x\left( {x + 1} \right)\left( {x - 1} \right).$
Phương trình $y' = 0$ có ba nghiệm đơn phân biệt cho nên thỏa mãn yêu cầu bài toán.
Ngoài ra, ta tính $y'$ và giải các phương trình $y'=0$ ở từng đáp án ta thấy:
Đáp án A: $y'=4x^3+4x=4x(x^2+1)$ chỉ có $1$ nghiệm $x=0$ nên loại.
Đáp án C: $y'=8x^3+8x=8x(x^2+1)$ chỉ có $1$ nghiệm $x=0$ nên loại.
Đáp án D: $y'=-4x^3-4x=-4x(x^2+1)$ chỉ có $1$ nghiệm $x=0$ nên loại.
Hướng dẫn giải:
Hàm số có $3$ điểm cực trị nếu phương trình $y' = 0$ có $3$ nghiệm phân biệt và $y'$ đổi dấu qua $3$ nghiệm đó.
(Đặc biệt số điểm cực trị bằng số nghiệm bội lẻ của phương trình $y'=0$).