Trả lời bởi giáo viên

Đáp án đúng: a

\(\begin{array}{l}y = \dfrac{{2x + 1}}{{{x^2} - 5x + 6}} = \dfrac{{2x + 1}}{{\left( {x - 2} \right)\left( {x - 3} \right)}} = \dfrac{7}{{x - 3}} - \dfrac{5}{{x - 2}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}}\end{array}\)

Xét hàm số \(\dfrac{1}{{ax + b}},\,a \ne 0\) ta có :

\(\begin{array}{l}y' = \dfrac{{ - a}}{{{{\left( {ax + b} \right)}^2}}}\\y'' = \dfrac{{a.2\left( {ax + b} \right).a}}{{{{\left( {ax + b} \right)}^4}}} = \dfrac{{2{a^2}}}{{{{\left( {ax + b} \right)}^3}}}\\y''' = \dfrac{{ - 2{a^2}.3{{\left( {ax + b} \right)}^2}.a}}{{{{\left( {ax + b} \right)}^6}}} = \dfrac{{ - 2.3.{a^3}}}{{{{\left( {ax + b} \right)}^4}}}\\....\\{y^{\left( n \right)}} = \dfrac{{{{\left( { - 1} \right)}^n}.{a^n}.n!}}{{{{\left( {ax + b} \right)}^{n + 1}}}}\\ \Rightarrow {\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 3} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\\,\,\,\,\,{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{{{\left( { - 1} \right)}^4}{{.1}^4}.4!}}{{{{\left( {x - 2} \right)}^5}}} = \dfrac{{4!}}{{{{\left( {x - 2} \right)}^5}}}\\ \Rightarrow {y^{\left( 4 \right)}} = 7{\left( {\dfrac{1}{{x - 3}}} \right)^{\left( 4 \right)}} - 5{\left( {\dfrac{1}{{x - 2}}} \right)^{\left( 4 \right)}} = \dfrac{{7.4!}}{{{{\left( {x - 3} \right)}^5}}} - \dfrac{{5.4!}}{{{{\left( {x - 2} \right)}^5}}}\end{array}\)

Hướng dẫn giải:

+) Với hàm phân thức bậc tử nhỏ hơn bậc mẫu thì ta đưa mẫu số về dạng tích và phân tích phân số thành tổng, hiệu các phấn số dạng \(\dfrac{A}{{ax + b}}\)

+) Tính đạo hàm tổng quát \({\left( {\dfrac{A}{{ax + b}}} \right)^{\left( n \right)}}\)

Câu hỏi khác