Cho $x;y;z \ne 0$ thỏa mãn $x + y + z = 0$. Chọn câu đúng về biểu thức$A = \dfrac{{xy}}{{{x^2} + {y^2} - {z^2}}} + \dfrac{{yz}}{{{y^2} + {z^2} - {x^2}}} + \dfrac{{zx}}{{{z^2} + {x^2} - {y^2}}}$.
Trả lời bởi giáo viên
Từ $x + y + z = 0 \Rightarrow x + y = - z \Rightarrow {x^2} + 2xy + {y^2} = {z^2} \Rightarrow {x^2} + {y^2} - {z^2} = - 2xy$.
Tương tự ta có : $\left\{ \begin{array}{l}{y^2} + {z^2} - {x^2} = - 2yz\\{z^2} + {x^2} - {y^2} = - 2zx\end{array} \right.$
Do đó: $A = \dfrac{{xy}}{{ - 2xy}} + \dfrac{{yz}}{{ - 2yz}} + \dfrac{{zx}}{{ - 2zx}} = - \dfrac{1}{2} - \dfrac{1}{2} - \dfrac{1}{2} = - \dfrac{3}{2}$
Vậy $A = - \dfrac{3}{2}.$
Suy ra \(A < - 1.\)
Hướng dẫn giải:
+ Sử dụng giả thiết để tính $x^2+y^2-z^2$ theo $xy$, $y^2+z^2-x^2$ theo $yz$ và $x^2+z^2-y^2$ theo $xz.$
+ Từ đó có biểu thức đơn giản hơn để ta rút gọn và tính toán